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Abstract

We propose a method for the determination of 15N csa/dipolar cross-correlation rates based on the measurement
of the two apparent transverse (or longitudinal) relaxation rates associated with each component of the nitro-
gen doublet (Nα and Nβ). This is achieved by inserting a spin state selective scheme in conventional inverse
Carr-Purcell-Meiboom-Gill (or inversion-recovery) pulse sequence which allows for the edition of a HSQC-
type spectrum for each of the spin states. Transverse cross-correlation rates necessitate two independent sets of
measurements (for Nα and Nβ, respectively), whereas for longitudinal cross correlation rates, besides Nα and
Nβ measurements, the method requires the knowledge of both the 15N longitudinal auto-relaxation rate and the
longitudinal two-spin order (2NzHz) auto-relaxation rate. These additional parameters are mandatory because of
the non-exponential behavior of the Nα and Nβ longitudinal decays. Conversely, the present method does not
require any complex manipulation of 2D spectra, the cross-correlation rates being obtained from the difference of
the two (Nα and Nβ) apparent relaxation rates. This approach is applied to 15N-labelled ubiquitin at two different
magnetic fields (9.4T and 14.1T).

Introduction

Cross-correlation between 1H-15N dipolar interaction
and 15N chemical shift anisotropy (csa) has proved
to be of considerable interest due to the nature of
the information they contain (Kumar et al., 2000;
Brutscher, 2000; Frueh, 2002). This relaxation in-
terference causes the two lines of a scalar-coupled
IS spin system to have different line widths (Gold-
man, 1984) due to their different relaxation behavior.
Such an effect has been successfully applied in the
field of biological molecular studies; it is, in partic-
ular, the basis of the TROSY experiment (Pervushin
et al., 1997), which selects the sharpest line of the 15N
doublet, thus making feasible NMR investigations of
larger proteins. It is also used quantitatively to charac-
terize the 15N csa tensor (magnitude and orientation)
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(Tjandra et al., 1996; Fushman et al., 1998; Scheurer
et al., 1999; Kover and Batta, 2001), and conform-
ational exchange (Kroenke et al, 1998; Boisbouvier
et al., 1999). Additionally, along with the classical
relaxation rates (15N longitudinal relaxation rate, R1,
15N transverse relaxation rate, R2, and 1H-15N cross-
relaxation rate, σ), cross-correlation rates appear quite
complementary in order to define more accurately pro-
tein motion (Tjandra et al., 1996; Fushman et al.,
1998; Boisbouvier et al., 1999).

Several approaches have been employed to access
the csa/dipolar interference term in proteins and they
could be classified in three main categories: (i) direct
methods based on the ratio of in-phase and antiphase
components of the 15N (or 13C) magnetization re-
gistered in two separate experiments (Tjandra et al.,
1996; Tessari et al., 1997; Ghose et al., 1998), (ii) dir-
ect methods based on the different evolution of the
doublet components (Kover and Batta, 2001; Bois-
bouvier et al., 1999; Hall et al., 2003a, b; Ferrage
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et al., 2004), (iii) indirect methods which yield cross-
correlation rates from an iterative fitting procedure
which makes use of four observables (1H-1H cross
relaxation, 15N longitudinal relaxation, multiexponen-
tional decay of the 2NzHz spin order and multiexpo-
nentional buildup of 2NzHz spin order) (Wang et al.,
2000). The methods introduced in this paper rely on
the second category. Here, we propose to follow sep-
arately the relaxation of each component of a 15N
doublet (the one, denoted Nα, corresponding to the
α spin state of the bonded proton; the second, denoted
Nβ, corresponding to the other spin state). Previously,
a related strategy was used for extracting 13C chemical
shift tensor in organic compounds (Walker et al., 2002)
with detection at the heteronucleus level. In order to
apply the method to proteins, the indirect detection of
heteronuclei via protons is compelling. Moreover, it is
noteworthy that such methods can suffer from signal
overlap in coupled 2D spectra, particularly for 1H-
coupled 1H-15N HSQC spectra of proteins greater than
10 kDa. In fact, the problem of signal overlap can be
partially solved using the IPAP scheme (Ottiger et al.,
1998) as recently demonstrated (Hall et al., 2003):
two separate 1H-coupled 1H-15N HSQC spectra are
recorded, one with the 15N doublet in-phase (IP) and
the other with this doublet in an anti-phase (AP) con-
figuration. Consequently, the two spectra have to be
added and subtracted in order to isolate each spin
state but without the penalty of a somewhat arbitrary
scaling which occurs in previous methods (Tjandra
et al., 1996). The subsisting drawback of this proced-
ure is that the signal overlap problem is only partially
solved because 1H-coupled spectra are involved. An
alternative strategy was introduced by Marion and col-
leagues (Boisbouvier et al., 1999) and successfully
applied to the measurement of carbon-13 transverse
cross-correlation rates in nucleic acids. It consists of
selecting and editing the 13Cα and 13Cβ states in two
independent experiments. Taking up their strategy, we
introduce novel pulse sequences adapted to the case
of proteins and extended so as to measure the lon-
gitudinal 15N csa/dipolar relaxation interference. We
use a pulse sequence element S2ED (Spin State Echo
Differentiation, Bouguet-Bonnet et al., 2003) derived
from the one proposed by Sorensen and colleagues
(Meissner et al., 1997). The insertion of this filter in a
classical 1H-coupled 1H-15N HSQC spectrum allows
us to select only one of the components of the 15N
doublet: Nα or Nβ. Thus, when it is inserted in an
inversion-recovery or Carr–Purcell–Meiboom–Gill re-
laxation measurement, we can follow separately the

evolution of Nα and Nβ, and therefore access to the in-
terference term which corresponds to the difference in
relaxation of these two components. It can be recalled
that this procedure yields only one peak per residue
in the 2D spectrum (for the Nα experiment and for
the Nβ experiment) and thus circumvents optimally
the problem of overlaps which occurs in a 1H coupled
HSQC spectrum at the expense of a sensitivity loss
by a factor two and, for extracting longitudinal cross-
correlation rates, the need to include the classical
nitrogen-15 auto-relaxation rates and the longitudinal
two-spin order relaxation rates.

Longitudinal cross-correlation measurement

The full sequence is displayed in Figure 1a. The S2ED
filter (shaded pulses) is inserted in the inverse-detected
inversion-recovery experiment (Farrow et al., 1994)
after the first INEPT. The π/2 pulse at the end of
the S2ED inverts one of the 15N doublet components
while the other is defocused by the field gradient pulse
applied at the beginning of the mixing time. The re-
covery of selected component is followed classically
by varying the mixing time τ. Moreover, the phase
cycles were set for obtaining a decay toward zero. The
α/β selection is achieved by modifying the π pulse
phase of the S2ED subsequence: ψN = 5π/8 (or
13π/8) for Nα and ψN = 3π/8 (or 11π/8) for Nβ.
Two sets of spectra are collected: one corresponding
to the recovery of Nα and the other to Nβ. Because the
resulting spectra can be decoupled in both dimensions,
quantitative analysis can be performed with the same
integration pattern map irrespective of the selected
spin state. This ensures an identical processing for the
two data sets. Experimentally, the behavior of the rep-
resentative decay curves obtained for each of the two
nitrogen doublet components is not mono-exponential
(Figure 2a). In order to explain this phenomenon, we
must describe completely the spin system evolution
taking into account several quantities: Nz (nitrogen-
15 magnetization), HN

z (magnetization of the proton
which is directly bonded to 15N) and Ho

z (magnetiza-
tion of other protons in the immediate surroundings of
15N). Therefore the relevant basis of operators is:

{Nz,H
N
z ,Ho

z , 2NzH
N
z , 2NzH

o
z , 2HN

z Ho
z , 4NzH

N
z Ho

z }
As suggested by Wang et al. (Wang et al.,

2000), spin diffusion may occur as follows: Nz →
4NzH

N
z Ho

z → 2NzH
o
z → 2NzH

N
z . However, ac-

cording to our simulations (Figure 3), the effect of
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Figure 1. Pulse sequences for 15N-1H dipolar/15N csa cross-correlation measurement. Narrow (wide) bars represent π/2 (π) flip angle pulses.
Quadrature detection in the indirect dimension is achieved by incrementing ϕ2 in States-TPPI fashion (Marion et al., 1989). J is set to the
average 15N-1H scalar coupling constant (91 Hz). 15N decoupling during 1H detection is achieved using GARP (Shaka et al., 1985). Water
signal was suppressed with 3-9-19 watergate technique (Sklenár et al., 1993). (a) Longitudinal cross-correlation measurements. Gradient
strengths g1,2,3,4 = (800 us, 40.0 G/cm), (800 us, −40.0 G/cm), (1.6 ms, −13.0 G/cm), (800 us, 10.0 G/cm). Complete phase cycling:

ϕ1 = x,−x; ϕ2 = y; ϕ3 = x, x,−x,−x; ψN = 4 (13π/8), 4 (5π/8) or ψN = 4 (11π/8), 4 (3π/8) for selection of Nα or Nβ, respectively;
receiver = x, −x, x, −x. (b) Transverse cross-correlation. Gradient strengths g1,2,3,4,5 = (800 us, 40.0 G/cm), (800 us, −40.0 G/cm), (1.6 ms,
−13.0 G/cm), (1.6 ms, −26.0 G/cm), (800 us, 10.0 G/cm). Complete phase cycling: ϕ1 = x, −x; ϕ2 = y; ϕ3 = x, x,−x,−x; ψN = 4
(13π/8), 4 (5π/8) or ψN = 4 (11π/8), 4 (3π/8) for selection of Nα or Nβ, respectively; receiver = x, −x, x, −x.
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Figure 2. Representative decay curves for peak intensities obtained with the GIFA package (Pons et al. 1996). Data are displayed for residue
S20 of 15N-ubiquitin (a) Longitudinal cross-correlation measurements using the pulse sequences of Figure 1a at 14.1T. Diamonds and squares
indicate the Nα and Nβ behaviours, respectively. Data corresponding to the measurement of the two-spin longitudinal order relaxation rate
are displayed in the inset (relaxation rate: R2NzHz

1 = 6.55 s−1). Continuous curves represent the best fit of the three data sets (see text).

(b) Transverse cross-correlation measurements using the pulse sequences of Figure 1b at 14.1T. Diamonds and squares indicate the Nα and Nβ

behaviours respectively. Continuous curves represent the best fit; each curve has been adjusted separately.
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Figure 3. (a) Simulations of the magnetization decay resulting from the sequences of Figure 1a performed with relaxation rates calculated at
B0 = 9.4T, with τc = 4.5 ns, τf = 30 ps and S2 = 0.85 (corresponding to a Lipari-Szabo model), �σN = −170 ppm (csa of amide nitrogen
15N, assumed to be axially symmetric), �σH = −10 ppm (csa of amide proton 1H, assumed to be axially symmetric), rNHN = 1.02 Å,

rNHo = 3.3 Å and rHNHo = 3.4 Å (corresponding to the averages of distances in NMR structure of ubiquitin from 1d3z.pdb). The analytical
expressions of relaxation rates that have been used are those given in the paper of Wang et al., 2000. Solid lines are for full spin space (with the
corresponding relaxation matrix top of figure) while dashed lines are for the reduced spin space with its associated relaxation matrix on the left.

Initial conditions: Nz(0) = ±γH

γN

Neq

2
and 2NzHz(0) = ±γH

γN

Neq

2
(for Nα) or ∓γH

γN

Neq

2
(for Nβ). (b) Difference (%) obtained when

using both systems. Small (negligible) differences appear only at relatively long mixing times (2% at 1 s).
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spin diffusion and of cross-relaxation proved to be
negligible when using the pulse sequences of Fig-
ure 1a. In fact, the resolution of the set of differential
equations governing the evolution of the above quant-
ities requires the knowledge of the initial conditions at
the beginning of the mixing time. The first 15N π/2
pulse followed by a gradient pulse destroys nitrogen
magnetization; therefore, neither longitudinal order
γN(2NzHz) nor nitrogen polarization γN(Nz) exists
at the beginning of the mixing time and we are thus
only dealing with polarization transferred from proton.
As only one nitrogen branch is inverted (hence the 1/2
factor in the expressions below) according to the 15N
π pulse phase in S2ED and considering the two step
phase cycle (ϕ1), the initial conditions (τ = 0s) for the
two relevant quantities are:

Nz(0) = ±γH

γN

Neq

2
, (1)

2NzHz(0) = ±γH

γN

Neq

2
(for Nα)

or ∓ γH

γN

Neq

2
(for Nβ).

(2)

Using these initial conditions, the simulations
provided the undisputed evidence that spin diffusion
is negligible up to relatively long mixing times (Fig-
ure 3). In comparison, the initial conditions are totally
different if we follow directly the buildup of the lon-
gitudinal two-spin order from Nz, as it is the case for
the experiments of Wang et al. (Wang et al., 2000) or
Kover et al. (Kover and Batta, 2001):

Nz(0) = −γH

γN

Neq, (3)

2NzHz(0) = 0. (4)

For these initial conditions, spin diffusion may occur
and cannot be neglected as apparent in our computer
simulations (see Figure 4), this feature being in perfect
agreement with the conclusions of Wang et al. (2000).
The fact that our approach does not suffer from spin
diffusion comes actually from other initial conditions
(see Equations 1 and 2). Consequently, considering the
pulse sequences of Figure 1a, the spin space can safely
reduce to the subspace {Nz, 2NzH

N
z } with two evol-

ution equations derived from the extended Solomon
equations:

dNz(t)

dt
= −RN

1 (Nz(t) − Neq) − ηz(2NzHz(t))

d2NzHz(t)

dt
=−R2NzHz

1 (2NzHz(t))−ηz(Nz(t)−Neq),

(5)

where RN
1 is the nitrogen longitudinal relaxation

rate, ηz the 15N csa/dipolar cross-correlation rate and
R2NzHz

1 the two-spin order longitudinal relaxation
rate. Neq stands for the thermal equilibrium nitrogen
magnetization.

Because of the necessity to fit non exponential
curves corresponding to eqs. (5), the measurements of
RN

1 and R2NzHz
1 are mandatory. Actually RN

1 could
be treated as an adjustable parameter but we found
that it is useless to refine it further (data not shown,
no significant change on the results). Consequently,
three data sets were used simultaneously in the fitting
procedure: one corresponding to the Nα experiments,
the second to the Nβ experiments and the third to the
measurement of the longitudinal two-spin order relax-
ation rate R2NzHz

1 . In the longitudinal two-spin order
experiment, data were obtained without a π pulse dur-
ing the mixing time, that is without suppressing the
effects of cross-correlation. More precisely, eqs. (5)
were used to adjust ηz and R2NzHz

1 . For Nα exper-

iments, initial conditions are Nz(0) = +γH

γN

Neq

2
and 2NzHz(0) = +Neq

2 , Nz being the observable;
for Nβ experiments, initial conditions are Nz(0) =
+γH

γN

Neq

2
and 2NzHz(0) = −γH

γN

Neq

2
, Nz being

the observable; and for 2NzHz experiments, initial

conditions are Nz(0) = −γH

γN

Neq

2
and 2NzHz(0) =

−γH

γN

Neq

2
, 2NzHz being the observable. An excellent

agreement between recalculated and experimental data
is obtained (Figure 2a), and this, even at long mixing
times as predicted by the simulations. It is obvious
that the fact that non exponential decays are observed
constitute a drawback of the method in the case of
longitudinal cross-correlation measurements. The re-
quirement of two additional experiments (for RN

1 and
R2NzHz) is not really a penalty because these measure-
ments must anyway be performed in a study aiming at
characterizing the dynamics of a protein. Moreover,
the simultaneous fitting of ηz and R2NzHz

1 experi-
ments ensures that cross-correlation effects are prop-
erly taken into account in the R2NzHz

1 measurement.
From the experimental point of view, a minimum of
eight mixing times is recommended in order to de-
scribe correctly the whole decay curves. Typically, the
range of mixing times must cover a signal decay of
80%, and therefore include long mixing times.
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Figure 4. (a) Simulations of the magnetization decay resulting from the inversion of the nitrogen magnetization with the aim of probing the
creation of the longitudinal two-spin order magnetization. Simulations have been performed with the same relaxation rates as those in Figure 3.

Initial conditions: Nz(0) = −γH

γN
Neq and 2NzHz(0) = 0. (b) Difference (%) obtained when using both systems.
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Transverse cross-correlation measurement

The sequence (Figure 1b) starts exactly in the same
way as before in order to eliminate nitrogen magnet-
ization at the beginning of the mixing time. The S2ED
filter is inserted prior to the classical Carr-Purcell-
Meiboom-Gill experiment after the first INEPT. As for
longitudinal measurements, α/β selection is achieved
by modifying the π pulse phase in the S2ED sub-
sequence: ψN = 5π/8 (or 13π/8) for Nα and ψN =
3π/8 (or 11π/8) for Nβ. The next π/2 pulse stores
one of the 15N doublet components along the z-axis
while the other is defocused by a field gradient pulse.
Thereafter the stored component is taken back to the
xy-plane and its decay is followed by incrementing the
number of loops in the CPMG pulse train. During the
evolution period, no 1H pulse is applied so as to avoid
any mixture of (α) and (β) spin states. After the nitro-
gen chemical shift labeling (t1), the 15N polarization is
converted into observable proton magnetization. As in
the previous sequence, decoupling is applied in both
dimensions.

As described previously (Goldman, 1984; Bois-
bouvier et al., 1999), the spin dynamics in the trans-
verse plane is governed by:

d

dt

(
N+

2N+Hz

)
= −R

(
N+

2N+Hz

)
with

R =

 RN

2
ηx,y

2
+ iπJNH

ηx,y

2
+ iπJNH RNH

2


 .

(6)

RN
2 and RNH 2 being the transverse relaxation

rates of N+ and 2N+Hz, respectively, ηx,y the csa-
dipolar transverse cross-correlation rate, and JNH the
scalar one-bond coupling constant. This can be trans-
formed in the basis of the operators Nα+ = 1

2 (N+ +
2N+Hz) and N

β
+ = 1

2 (N+ − 2N+Hz):

d

dt

(
Nα+
N

β
+

)
= −R′

(
Nα+
N

β
+

)
with R′ =


 R2 + ηx,y

2
− iπJNH �R2

�R2 R2 − ηx,y

2
+ iπJNH




(7)

with R2 = 1
2 (RN

2 + RNH
2 ) and �R2 = 1

2 (RN
2 −

RNH
2 ). This latter quantity can be omitted in the above

matrix because, here, the difference between the di-
agonal elements, (ηx,y + 2iπJNH ), is much bigger
than �R2 (Goldman, 1984). R2 is the transverse re-
laxation rate averaged over the nitrogen in-phase and

anti-phase components. To make effective such an av-
eraging, the values of mixing times delays have to
be chosen as multiples of 1/4JNH . In this way, the
apparent relaxation rate constants Rα

2 and R
β
2 are ob-

tained from the mono-exponential intensity decay of
well-resolved cross-peaks in a series of 2D experi-
ments. Figure 2b shows the typical decay of the two
components associated with the residue S20 of ubi-
quitin. It must be pointed out that, because the two
experiments are independent, neither particular spec-
tra processing nor combination of data between the
two spectra is required, as it is the case for many other
methods (Tjandra et al., 1996; Tessari et al., 1997;
Hall et al., 2003; Pelupessy et al., 2003). The extrac-
tion of apparent relaxation rates from the decay curves
is identical to the one usually performed for obtaining
transverse auto relaxation rates. The corresponding in-
terference term ηxy is obtained by the difference of
these apparent relaxation rates:

Rα
2 = R2 + ηxy

2

R
β
2 = R2 − ηxy

2


 ηxy = Rα

2 − R
β
2 . (8)

The two experimental curves can also be fitted sim-
ultaneously as previously reported (Hall et al., 2003)
and one can, if necessary, use only short mixing time
values so as to minimize possible multi-spin relaxation
effects. In our case, as it can be observed in Figure 2b,
both decays are mono-exponential and we can exclude
any multi-spin effect.

Results

The validity of all experiments is demonstrated on a
15N labeled ubiquitin sample (1.4 mM in H20 95%:
D2O 5%, pH = 4.7, Na acetate buffer, VLI Research)
at 300K. Measurements were made at 9.395T and
14.093T on Bruker Avance DRX spectrometers (1H
resonance frequency: 400 MHz and 600 MHz, respect-
ively). Spectra were acquired with spectral widths of
8.4 kHz and 1.8 kHz in the 1H and 15N dimensions, re-
spectively. For the measurement of longitudinal cross-
correlation rates, the experimental parameters were
as follows; number of scans: 32 (400 MHz) and 16
(600 MHz), recycling delay: 4 s, 128 t1 increments.
α state and β state experiments were interleaved for
several values of the mixing time (2, 50, 100, 150,
200, 250, 300, 400, 600, 800, 1000, and 1300 ms). For
the measurement of transverse cross-correlation rates,
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Figure 5. 15N relaxation data measured for ubiquitin. Left: longitudinal cross-correlation rates ηz obtained with the pulse sequences of
Figure 1a at 9.4T (open diamonds) and at 14.1T (filled squares). Right: transverse cross-correlation rates ηx,y obtained with the pulse sequences
of Figure 1b at 9.4T (open diamonds) and at 14.1T (filled squares).

Figure 6. Comparison between the η values obtained at 14.1T for ubiquitin: data obtained with the pulse sequences of Figure 1a (left) or 1b
(right) at 14.1T (filled diamonds), data published by Tjandra et al. (1996) (stars), and data published by Kover et al. (2001) (open squares).
Left: longitudinal cross-correlation rates ηz , right: transverse cross-correlation rates ηx,y . It is noteworthy that, in the article of Tjandra et al.,
ηx,y are not directly available, the corresponding values have been recalculated with the material provided in their article.

the experimental parameters were as follows; number
of scans: 32 (400 MHz) and 16 (600 MHz), recycling
delay: 4 s, 128 t1 increments. The CPMG pulse train
was calibrated at a power level such as |γB1|/2π =
16.6 kHz (this corresponds to π/2 pulse duration of
60 µs) and an echo delay of 880 µs. The relaxation de-
cays were sampled at eight times: 16, 48, 80, 112, 144,
192, 256, and 320 ms. Data processing was carried out
with the GIFA version 4.4 program (Pons et al., 1996).
The GIFA extension for relaxation was used to deduce
the apparent transverse relaxation rates (Rα

2 and R
β
2)

from peak intensities. A homemade program was writ-
ten for fitting the longitudinal cross-correlation rates
according to the extended Solomon equations. The
outputs are displayed on Figure 5 for the backbone
amides of human ubiquitin. The ηxy and ηz values
determined here are compared (Figure 6) with those
presented at 14.1 T for ubiquitin (ηz, Tjandra et al.,

1996; ηxy and ηz, Kover et al., 2001). For ηz a reas-
onable agreement is found whereas, for ηxy , the three
sets of results are much more scattered. Nevertheless,
and as expected, the ηxy scale linearly with R2 val-
ues (ηz with R1, respectively) in agreement with the
theoretical prediction (Fushman and Cowburn, 1998).
Moreover, an average factor of 1.5, corresponding to
the ratio of magnetic field values, is found between
ηxy at 14.1T and ηxy at 9.4T as expected as far as
a predominant contribution of the spectral density at
zero frequency is assumed.

Discussion and conclusion

Most of the methods designed to measure the 15N
csa/dipolar relaxation interference require two sep-
arate experiments, their comparison leading to the
desired cross-correlation rates. As it was made clear



142

by recent articles (Hall et al., 2003; Pelupessy et al.,
2003), the success of the measurement depends of
several factors. On the one hand, the two sequences
should be nearly identical to avoid any scaling factor
between the two experiments; on the other hand the
signal overlap problem must be addressed. The two
sets of pulse sequences presented in this article ful-
fill efficiently these requirements with, however, the
penalty of a sensitivity loss. Concerning pulses and
delays, the two sequences are identical; only one
pulse phase has to be modified from one experiment
to the other, thus avoiding the recourse to any scal-
ing factor in their processing. Moreover, because the
direct observation of a single spin state is achieved
within each experiment, the combination (addition or
subtraction) of two HSQC spectra is not required as
with the IPAP scheme (Ottiger et al., 1998). Finally,
no signal overlap problem is encountered as the spec-
tra do not contain the superposition of in-phase and
anti-phase components. It can be admitted that the pro-
posed method, as far as longitudinal cross-correlation
measurements are concerned, is not straightforward; it
requires additional relaxation parameters and a more
complex analysis of experimental data. Although this
latter point could be considered as a drawback, the ad-
ditional effort is not considerable and this affords the
possibility of measuring in identical conditions lon-
gitudinal cross-correlation rates and longitudinal spin-
order auto-relaxation rates. In conclusion, we have
introduced a novel experimental approach to meas-
ure both 15N csa/dipolar longitudinal and transverse
cross-correlation terms by means of spin state select-
ive measurements. This strategy could be extended to
the measurement of any relaxation parameter that acts
differently on the two spin states.
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